Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612815

RESUMEN

This systematic review investigates the potential of circulating tumour DNA (ctDNA) as a predictive biomarker in the management and prognosis of squamous cell carcinoma of the anal canal (SCCA). PubMed, EMBASE, and Cochrane Central Registry of Controlled Trials were searched until 7 January 2024. Selection criteria included research articles exploring ctDNA in the context of anal cancer treatment response, recurrence risk assessment, and consideration of salvage surgery. A total of eight studies were therefore included in the final review, examining a total of 628 patients. These studies focused on three main themes: SCCA diagnosis and staging, treatment response, and patient outcomes. Significant heterogeneity was observed in terms of patient cohort, study methodology, and ctDNA biomarkers. Four studies provided information on the sensitivity of ctDNA biomarkers in SCCA, with a range of 82-100%. Seven studies noted a correlation between pre-treatment ctDNA levels and SCCA disease burden, suggesting that ctDNA could play a role as a biomarker for the staging of SCCA. Across all seven studies with paired pre- and post-treatment ctDNA samples, a trend was seen towards decreasing ctDNA levels post-treatment, with specific identification of a 'fast elimination' group who achieve undetectable ctDNA levels prior to the end of treatment and may be less likely to experience treatment failure. Residual ctDNA detection post-treatment was associated with poorer patient prognosis. This systematic review identifies the broad potential of ctDNA as a useful and decisive tool in the management of SCCA. Further analysis of ctDNA biomarkers that include larger patient cohorts is required in order to clearly evaluate their potential role in clinical decision-making processes.


Asunto(s)
Neoplasias del Ano , Carcinoma de Células Escamosas , ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Neoplasias del Ano/diagnóstico , Neoplasias del Ano/genética , Neoplasias del Ano/terapia , Biomarcadores , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia
2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474145

RESUMEN

Neutrophils are dynamic cells, playing a critical role in pathogen clearance; however, neutrophil infiltration into the tissue can act as a double-edged sword. They are one of the primary sources of excessive inflammation during infection, which has been observed in many infectious diseases including pneumonia and active tuberculosis (TB). Neutrophil function is influenced by interactions with other immune cells within the inflammatory lung milieu; however, how these interactions affect neutrophil function is unclear. Our study examined the macrophage-neutrophil axis by assessing the effects of conditioned medium (MΦ-CM) from primary human monocyte-derived macrophages (hMDMs) stimulated with LPS or a whole bacterium (Mycobacterium tuberculosis) on neutrophil function. Stimulated hMDM-derived MΦ-CM boosts neutrophil activation, heightening oxidative and glycolytic metabolism, but diminishes migratory potential. These neutrophils exhibit increased ROS production, elevated NET formation, and heightened CXCL8, IL-13, and IL-6 compared to untreated or unstimulated hMDM-treated neutrophils. Collectively, these data show that MΦ-CM from stimulated hMDMs activates neutrophils, bolsters their energetic profile, increase effector and inflammatory functions, and sequester them at sites of infection by decreasing their migratory capacity. These data may aid in the design of novel immunotherapies for severe pneumonia, active tuberculosis and other diseases driven by pathological inflammation mediated by the macrophage-neutrophil axis.


Asunto(s)
Mycobacterium tuberculosis , Neumonía , Tuberculosis , Humanos , Neutrófilos/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo
3.
Metabolites ; 14(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38248845

RESUMEN

Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.

4.
Open Res Eur ; 3: 88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37981907

RESUMEN

Background: Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods: Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results: Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions: Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.


The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

5.
Front Oncol ; 13: 1216911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601689

RESUMEN

Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer.

6.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108244

RESUMEN

Resistance to neoadjuvant chemoradiation therapy is a significant clinical challenge in the management of rectal cancer. There is an unmet need to identify the underlying mechanisms of treatment resistance to enable the development of biomarkers predictive of response and novel treatment strategies to improve therapeutic response. In this study, an in vitro model of inherently radioresistant rectal cancer was identified and characterized to identify mechanisms underlying radioresistance in rectal cancer. Transcriptomic and functional analysis demonstrated significant alterations in multiple molecular pathways, including the cell cycle, DNA repair efficiency and upregulation of oxidative phosphorylation-related genes in radioresistant SW837 rectal cancer cells. Real-time metabolic profiling demonstrated decreased reliance on glycolysis and enhanced mitochondrial spare respiratory capacity in radioresistant SW837 cells when compared to radiosensitive HCT116 cells. Metabolomic profiling of pre-treatment serum samples from rectal cancer patients (n = 52) identified 16 metabolites significantly associated with subsequent pathological response to neoadjuvant chemoradiation therapy. Thirteen of these metabolites were also significantly associated with overall survival. This study demonstrates, for the first time, a role for metabolic reprograming in the radioresistance of rectal cancer in vitro and highlights a potential role for altered metabolites as novel circulating predictive markers of treatment response in rectal cancer patients.


Asunto(s)
Neoplasias del Recto , Humanos , Neoplasias del Recto/genética , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Reparación del ADN , Recto/patología , Perfilación de la Expresión Génica , Metabolismo Energético , Tolerancia a Radiación/genética , Terapia Neoadyuvante
7.
Cancers (Basel) ; 15(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980567

RESUMEN

Oesophageal adenocarcinoma (OAC) is a poor prognosis cancer with limited response rates to current treatment modalities and has a strong link to obesity. To better elucidate the role of visceral adiposity in this disease state, a full metabolic profile combined with analysis of secreted pro-inflammatory cytokines, metabolites, and lipid profiles were assessed in human ex vivo adipose tissue explants from obese and non-obese OAC patients. These data were then related to extensive clinical data including obesity status, metabolic dysfunction, previous treatment exposure, and tumour regression grades. Real-time energy metabolism profiles were assessed using the seahorse technology. Adipose explant conditioned media was screened using multiplex ELISA to assess secreted levels of 54 pro-inflammatory mediators. Targeted secreted metabolite and lipid profiles were analysed using Ultra-High-Performance Liquid Chromatography coupled with Mass Spectrometry. Adipose tissue explants and matched clinical data were collected from OAC patients (n = 32). Compared to visceral fat from non-obese patients (n = 16), visceral fat explants from obese OAC patients (n = 16) had significantly elevated oxidative phosphorylation metabolism profiles and an increase in Eotaxin-3, IL-17A, IL-17D, IL-3, MCP-1, and MDC and altered secretions of glutamine associated metabolites. Adipose explants from patients with metabolic dysfunction correlated with increased oxidative phosphorylation metabolism, and increases in IL-5, IL-7, SAA, VEGF-C, triacylglycerides, and metabolites compared with metabolically healthy patients. Adipose explants generated from patients who had previously received neo-adjuvant chemotherapy (n = 14) showed elevated secretions of pro-inflammatory mediators, IL-12p40, IL-1α, IL-22, and TNF-ß and a decreased expression of triacylglycerides. Furthermore, decreased secreted levels of triacylglycerides were also observed in the adipose secretome of patients who received the chemotherapy-only regimen FLOT compared with patients who received no neo-adjuvant treatment or chemo-radiotherapy regimen CROSS. For those patients who showed the poorest response to currently available treatments, their adipose tissue was associated with higher glycolytic metabolism compared to patients who had good treatment responses. This study demonstrates that the adipose secretome in OAC patients is enriched with mediators that could prime the tumour microenvironment to aid tumour progression and attenuate responses to conventional cancer treatments, an effect which appears to be augmented by obesity and metabolic dysfunction and exposure to different treatment regimes.

8.
Pharmaceutics ; 15(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36839682

RESUMEN

Glioblastoma multiforme (GBM) is the most common adult primary brain malignancy, with dismal survival rates of ~14.6 months. The current standard-of-care consists of surgical resection and chemoradiotherapy, however the treatment response is limited by factors such as tumour heterogeneity, treatment resistance, the blood-brain barrier, and immunosuppression. Several immunotherapies have undergone clinical development for GBM but demonstrated inadequate efficacy, yet future combinatorial approaches are likely to hold more promise. Olaparib is FDA-approved for BRCA-mutated advanced ovarian and breast cancer, and clinical studies have revealed its utility as a safe and efficacious radio- and chemo-sensitiser in GBM. The ability of Olaparib to enhance natural killer (NK) cell-mediated responses has been reported in prostate, breast, and lung cancer. This study examined its potential combination with NK cell therapies in GBM by firstly investigating the susceptibility of the GBM cell line T98G to NK cells and, secondly, examining whether Olaparib can sensitise T98G cells to NK cell-mediated responses. Here, we characterise the NK receptor ligand profile of T98G cells and demonstrate that Olaparib does not dampen T98G susceptibility to NK cells or elicit immunomodulatory effects on the function of NK cells. This study provides novel insights into the potential combination of Olaparib with NK cell therapies for GBM.

9.
J Proteomics ; 266: 104684, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35842220

RESUMEN

Oesophageal adenocarcinoma (OAC) is an aggressive cancer with a five-year survival of <15%. Current chemotherapeutic strategies only benefit a minority (20-30%) of patients and there are no methods available to differentiate between responders and non-responders. We performed quantitative proteomics using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) on albumin/IgG-depleted and non-depleted plasma samples from 23 patients with locally advanced OAC prior to treatment. Individuals were grouped based on tumour regression (TRG) score (TRG1/2/3 vs TRG4/5) after chemotherapy, and differentially abundant proteins were compared. Protein depletion of highly abundant proteins led to the identification of around twice as many proteins. SWATH-MS revealed significant quantitative differences in the abundance of several proteins between the two groups. These included complement c1q subunit proteins, C1QA, C1QB and C1QC, which were of higher abundance in the low TRG group. Of those that were found to be of higher abundance in the high TRG group, glutathione S-transferase pi (GSTP1) exhibited the lowest p-value and highest classification accuracy and Cohen's kappa value. Concentrations of these proteins were further examined using ELISA-based assays. This study provides quantitative information relating to differences in the plasma proteome that underpin response to chemotherapeutic treatment in oesophageal cancers. SIGNIFICANCE: Oesophageal cancers, including oesophageal adenocarcinoma (OAC) and oesophageal gastric junction cancer (OGJ), are one of the leading causes of cancer mortality worldwide. Curative therapy consists of surgery, either alone or in combination with adjuvant or neoadjuvant chemotherapy or radiation, or combination chemoradiotherapy regimens. There are currently no clinico-pathological means of predicting which patients will benefit from chemotherapeutic treatments. There is therefore an urgent need to improve oesophageal cancer disease management and treatment strategies. This work compared proteomic differences in OAC patients who responded well to chemotherapy as compared to those who did not, using quantitative proteomics prior to treatment commencement. SWATH-MS analysis of plasma (with and without albumin/IgG-depletion) from OAC patients prior to chemotherapy was performed. This approach was adopted to determine whether depletion offered a significant improvement in peptide coverage. Resultant datasets demonstrated that depletion increased peptide coverage significantly. Additionally, there was good quantitative agreement between commonly observed peptides. Data analysis was performed by adopting both univariate as well as multivariate analysis strategies. Differentially abundant proteins were identified between treatment response groups based on tumour regression grade. Such proteins included complement C1q sub-components and GSTP1. This study provides a platform for further work, utilising larger sample sets across different treatment regimens for oesophageal cancer, that will aid the development of 'treatment response prediction assays' for stratification of OAC patients prior to chemotherapy.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Albúminas , Proteínas Sanguíneas/uso terapéutico , Complemento C1q/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Humanos , Inmunoglobulina G , Proteómica/métodos , Neoplasias Gástricas/patología , Resultado del Tratamiento
10.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35884487

RESUMEN

Oesophageal adenocarcinoma (OAC) incidence has increased dramatically in the developed world, yet outcomes remain poor. Extensive endoscopic surveillance programs among patients with Barrett's oesophagus (BO), the precursor lesion to OAC, have aimed to both prevent the development of OAC via radiofrequency ablation (RFA) and allow earlier detection of disease. However, given the low annual progression rate and the costs of endoscopy/RFA, improvement is needed. Prognostic biomarkers to stratify BO patients based on their likelihood to progress would enable a more targeted approach to surveillance and RFA of high-risk precursor lesions, improving the cost-risk-benefit ratio. Similarly, diagnostic biomarkers for OAC could enable earlier diagnosis of disease by allowing broader population screening. Current standard treatment for locally advanced OAC includes neoadjuvant chemotherapy (+/- radiotherapy) despite only a minority of patients benefiting from neoadjuvant treatment. Accordingly, biomarkers predictive of response to neoadjuvant therapy could improve patient outcomes by reducing time to surgery and unnecessary toxicity for the patients who would have received no benefit from the therapy. In this mini-review, we will discuss the emerging biomarkers which promise to dramatically improve patient outcomes along the BO-OAC disease sequence.

11.
World J Gastroenterol ; 28(21): 2302-2319, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35800186

RESUMEN

BACKGROUND: In the contemporary era of cancer immunotherapy, an abundance of clinical and translational studies have reported radiotherapy (RT) and immunotherapies as a viable option for immunomodulation of many cancer subtypes, with many related clinical trials ongoing. In locally advanced disease, chemotherapy or chemoradiotherapy followed by surgical excision of the tumour remain the principal treatment strategy in oesophageal adenocarcinoma (OAC), however, the use of the host immune system to improve anti-tumour immunity is rapidly garnering increased support in the curative setting. AIM: To immunophenotype OAC patients' immune checkpoint (IC) expression with and without radiation and evaluate the effects of checkpoint blockade on cell viability. METHODS: In the contemporary era of cancer immunotherapy, an abundance of studies have demonstrated that combination RT and IC inhibitors (ICIs) are effective in the immunomodulation of many cancer subtypes, with many related clinical trials ongoing. Although surgical excision and elimination of tumour cells by chemotherapy or chemoradiotherapy remains the gold standard approach in OAC, the propagation of anti-tumour immune responses is rapidly garnering increased support in the curative setting. The aim of this body of work was to immunophenotype OAC patients' IC expression with and without radiation and to establish the impact of checkpoint blockade on cell viability. This study was a hybrid combination of in vitro and ex vivo models. Quantification of serum immune proteins was performed by enzyme-linked immunosorbent assay. Flow cytometry staining was performed to evaluate IC expression for in vitro OAC cell lines and ex vivo OAC biopsies. Cell viability in the presence of radiation with and without IC blockade was assessed by a cell counting kit-8 assay. RESULTS: We identified that conventional dosing and hypofractionated approaches resulted in increased IC expression (PD-1, PD-L1, TIM3, TIGIT) in vitro and ex vivo in OAC. There were two distinct subcohorts with one demonstrating significant upregulation of ICs and the contrary in the other cohort. Increasing IC expression post RT was associated with a more aggressive tumour phenotype and adverse features of tumour biology. The use of anti-PD-1 and anti-PD-L1 immunotherapies in combination with radiation resulted in a significant and synergistic reduction in viability of both radiosensitive and radioresistant OAC cells in vitro. Interleukin-21 (IL-21) and IL-31 significantly increased, with a concomitant reduction in IL-23 as a consequence of 4 Gray radiation. Similarly, radiation induced an anti-angiogenic tumour milieu with reduced expression of vascular endothelial growth factor-A, basic fibroblast growth factor, Flt-1 and placental growth factor. CONCLUSION: The findings of the current study demonstrate synergistic potential for the use of ICIs and ionising radiation to potentiate established anti-tumour responses in the neoadjuvant setting and is of particular interest in those with advanced disease, adverse features of tumour biology and poor treatment responses to conventional therapies.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Femenino , Humanos , Factor de Crecimiento Placentario , Factor A de Crecimiento Endotelial Vascular
12.
Nutrients ; 14(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807897

RESUMEN

BACKGROUND: Selenium manifests its biological effects through its incorporation into selenoproteins, which play several roles in countering oxidative and inflammatory responses implicated in colorectal carcinogenesis. Selenoprotein genetic variants may contribute to colorectal cancer (CRC) development, as we previously observed for SNP variants in a large European prospective study and a Czech case-control cohort. METHODS: We tested if significantly associated selenoprotein gene SNPs from these studies were also associated with CRC risk in case-control studies from Ireland (colorectal neoplasia, i.e., cancer and adenoma cases: 450, controls: 461) and the Czech Republic (CRC cases: 718, controls: 646). Genotyping of 23 SNPs (20 in the Irish and 13 in the Czechs) was performed by competitive specific allele-specific PCR (KASPar). Multivariable adjusted logistic regression was used to assess the associations with CRC development. RESULTS: We found significant associations with an increased CRC risk for rs5859 (SELENOF) and rs2972994 (SELENOP) in the Irish cohort but only with rs4802034 (SELENOV) in the Czechs. Significant associations were observed for rs5859 (SELENOF), rs4659382 (SELENON), rs2972994 (SELENOP), rs34713741 (SELENOS), and the related Se metabolism gene variant rs2275129 (SEPHS1) with advanced colorectal neoplasia development. However, none of these findings retained significance after multiple testing corrections. CONCLUSIONS: Several SNPs previously associated with CRC risk were also associated with CRC or colorectal neoplasia development in either the Irish or Czech cohorts. Selenoprotein gene variation may modify CRC risk across diverse European populations, although the specific variants may differ.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/epidemiología , Adenoma/genética , Estudios de Casos y Controles , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , República Checa/epidemiología , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Selenoproteína P/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
13.
Nutrients ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683998

RESUMEN

BACKGROUND: Mucosal-associated invariant T (MAIT) cells promote inflammation in obesity and are implicated in the progression of non-alcoholic fatty liver disease (NAFLD). However, as the intrahepatic MAIT cell response to lifestyle intervention in NAFLD has not been investigated, this work aimed to examine circulating and intrahepatic MAIT cell populations in patients with NAFLD, after either 12 weeks of dietary intervention (DI) or aerobic exercise intervention (EI). METHODS: Multicolour flow cytometry was used to immunophenotype circulating and intrahepatic MAIT cells and measure MAIT cell expression (median fluorescence intensity, MFI) of the activation marker CD69 and apoptotic marker CD95. Liver histology, clinical parameters, and MAIT cell populations were assessed at baseline (T0) and following completion (T1) of DI or EI. RESULTS: Forty-five patients completed the study. DI participants showed decreased median (interquartile range) expression of the activation marker CD69 on circulating MAIT cells (T0: 104 (134) versus T1 27 (114) MFI; p = 0.0353) and improvements in histological steatosis grade post-intervention. EI participants showed increased expression of the apoptotic marker CD95, both in circulating (T0: 1549 (888) versus T1: 2563 (1371) MFI; p = 0.0043) and intrahepatic MAIT cells (T0: 2724 (862) versus T1: 3117 (1622) MFI; p = 0.0269). Moreover, the percentage of intrahepatic MAIT cells significantly decreased after EI (T0: 11.1 (14.4) versus T1: 5.3 (9.3)%; p = 0.0029), in conjunction with significant improvements in fibrosis stage and hepatocyte ballooning. CONCLUSIONS: These data demonstrate independent benefits from dietary and exercise intervention and suggest a role for intrahepatic MAIT cells in the observed histological improvements in NAFLD.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores , Dieta , Terapia por Ejercicio , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia
14.
Cancers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681687

RESUMEN

BACKGROUND: Telehealth has enabled access to rehabilitation throughout the pandemic. We assessed the feasibility of delivering a multi-disciplinary, multi-component rehabilitation programme (ReStOre@Home) to cancer survivors via telehealth. METHODS: This single-arm mixed methods feasibility study recruited participants who had completed curative treatment for oesophago-gastric cancer for a 12-week telehealth rehabilitation programme, involving group resistance training, remotely monitored aerobic training, one-to-one dietetic counselling, one-to-one support calls and group education. The primary outcome was feasibility, measured by recruitment rates, attendance, retention, incidents, acceptability, Telehealth Usability Questionnaire (TUQ) and analysis of semi-structured interviews. RESULTS: Characteristics of the twelve participants were: 65.42 ± 7.24 years; 11 male; 10.8 ± 3.9 months post-op; BMI 25.61 ± 4.37; received neoadjuvant chemotherapy 7/12; received adjuvant chemotherapy 4/12; hospital length of stay 16 days (median). Recruitment rate was 32.4%, and retention rate was 75%. Mean attendance was: education 90%; dietetics 90%; support calls 84%; resistance training 78%. Mean TUQ score was 4.69/5. Adaptations to the planned resistance training programme were required. Participants reported that ReStOre@Home enhanced physical and psychological wellbeing, and online delivery was convenient. Some reported a preference for in-person contact but felt that the online group sessions provided adequate peer support. CONCLUSION: Telehealth delivery of ReStOre@Home was most feasible in individuals with moderate to high levels of digital skills. Low level of digitals skills was a barrier to recruitment and retention. Participants reported high levels of programme adherence and participant satisfaction. Adaptations to future programmes, including introducing elements of in-person contact, are required.

16.
Front Immunol ; 13: 823225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154142

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) are being investigated for their role as an adjunct in the multimodal treatment of esophageal adenocarcinoma (EAC). The most effective time to incorporate ICIs remains unknown. Our study profiles systemic anti-tumor immunity perioperatively to help inform the optimal timing of ICIs into current standards of care for EAC patients. Methods: Systemic immunity in 11 EAC patients was phenotyped immediately prior to esophagectomy (POD-0) and post-operatively (POD)-1, 3, 7 and week 6. Longitudinal serological profiling was conducted by ELISA. The frequency of circulating lymphocytes, activation status, immune checkpoint expression and damage-associated molecular patterns was assessed by flow cytometry. Results: The frequency of naïve T-cells significantly increased in circulation post-esophagectomy from POD-0 to POD-7 (p<0.01) with a significant decrease in effector memory T-cells by POD7 followed by a subsequent increase by week 6 (p<0.05). A significant increase in activated circulating CD27+ T-cells was observed from POD-0 to POD-7 (p<0.05). The percentage of PD-1+ and CTLA-4+ T-cells peaked on POD-1 and was significantly decreased by week 6 (p<0.01). There was a significant increase in soluble PD-1, PD-L2, TIGIT and LAG-3 from POD-3 to week 6 (p<0.01). Increased checkpoint expression correlated with those who developed metastatic disease early in their postoperative course. Th1 cytokines and co-stimulatory factors decreased significantly in the immediate post-operative setting, with a reduction in IFN-γ, IL-12p40, IL-1RA, CD28, CD40L and TNF-α. A simultaneous increase was observed in Th2 cytokines in the immediate post-operative setting, with a significant increase in IL-4, IL-10, IL-16 and MCP-1 before returning to preoperative levels at week 6. Conclusion: Our study highlights the prevailing Th2-like immunophenotype post-surgery. Therefore, shifting the balance in favour of a Th1-like phenotype would offer a potent therapeutic approach to promote cancer regression and prevent recurrence in the adjuvant setting and could potentially propagate anti-tumour immune responses perioperatively if administered in the immediate neoadjuvant setting. Consequently, this body of work paves the way for further studies and appropriate trial design is needed to further interrogate and validate the use of ICI in the multimodal treatment of locally advanced disease in the neoadjuvant and adjuvant setting.


Asunto(s)
Adenocarcinoma/terapia , Neoplasias Esofágicas/terapia , Esofagectomía , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Adenocarcinoma/inmunología , Anciano , Estudios de Cohortes , Neoplasias Esofágicas/inmunología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Masculino , Terapia Neoadyuvante
17.
Front Med (Lausanne) ; 9: 1036322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698840

RESUMEN

Uveal melanoma (UM) is an intraocular cancer with propensity for liver metastases. The median overall survival (OS) for metastatic UM (MUM) is 1.07 years, with a reported range of 0.84-1.34. In primary UM, high cysteinyl leukotriene receptor 1 (CysLT1) expression associates with poor outcomes. CysLT1 antagonists, quininib and 1,4-dihydroxy quininib, alter cancer hallmarks of primary and metastatic UM cell lines in vitro. Here, the clinical relevance of CysLT receptors and therapeutic potential of quininib analogs is elaborated in UM using preclinical in vivo orthotopic xenograft models and ex vivo patient samples. Immunohistochemical staining of an independent cohort (n = 64) of primary UM patients confirmed high CysLT1 expression significantly associates with death from metastatic disease (p = 0.02; HR 2.28; 95% CI 1.08-4.78), solidifying the disease relevance of CysLT1 in UM. In primary UM samples (n = 11) cultured as ex vivo explants, 1,4-dihydroxy quininib significantly alters the secretion of IL-13, IL-2, and TNF-α. In an orthotopic, cell line-derived xenograft model of MUM, 1,4-dihydroxy quininib administered intraperitoneally at 25 mg/kg significantly decreases ATP5B expression (p = 0.03), a marker of oxidative phosphorylation. In UM, high ATP5F1B is a poor prognostic indicator, whereas low ATP5F1B, in combination with disomy 3, correlates with an absence of metastatic disease in the TCGA-UM dataset. These preclinical data highlight the diagnostic potential of CysLT1 and ATP5F1B in UM, and the therapeutic potential of 1,4-dihydroxy quininib with ATP5F1B as a companion diagnostic to treat MUM.

18.
Cancer Lett ; 525: 1-8, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34662546

RESUMEN

The epidemiological correlation between obesity and cancer is well characterized, but the biological mechanisms which regulate tumor development and response to therapy in obese cancer patients remain unclear. The tumor microenvironment plays an important role in protecting cancer cells by altering the delivery of anticancer therapy to the tumor tissue, reducing the efficacy of treatment. Obese tumor microenvironment provides additional benefits to the survival of tumor cells against anticancer therapies by altering the extracellular matrix composition, angiogenesis processes and the immune cells profile. Nanotechnology, and in particular gold nanoparticles, are being researched as a theranostic strategy for cancer treatment due to their ability to sensitize cancer cells to radiation and photodynamic therapy, enhance delivery of drugs to tumor cells, and in diagnostic applications. Adipose tissue and the obese tumor microenvironment may alter the activity of nanotherapeutics. In this article, we reviewed the current state of our understanding about the mechanisms by which the obese tumor microenvironment may alter the delivery and efficacy of anti-cancer treatments, and why the use of gold nanoparticles may represent an interesting strategy for cancer treatment in the obesity setting.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Oro/química , Humanos , Nanopartículas del Metal/química , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
19.
Metabolites ; 11(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822426

RESUMEN

Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Previous work in our group has demonstrated that overweight/obese OAC patients have better responses to neoadjuvant therapy, but the underlying mechanisms are unknown. Unravelling the immune-metabolic signatures of adipose tissue may provide insight for this observation. We hypothesised that different metabolic pathways predominate in visceral (VAT) and subcutaneous adipose tissue (SAT) and inflammatory secretions will differ between the fat depots. Real-time ex vivo metabolic profiles of VAT and SAT from 12 OAC patients were analysed. These samples were screened for the secretion of 54 inflammatory mediators, and data were correlated with patient body composition. Oxidative phosphorylation (OXPHOS) was significantly higher in VAT when compared to SAT. OXPHOS was significantly higher in the SAT of patients receiving neoadjuvant treatment. VEGF-A, VEGF-C, P1GF, Flt-1, bFGF, IL-15, IL-16, IL-17A, CRP, SAA, ICAM-1, VCAM-1, IL-2, IL-13, IFN-γ, and MIP-1ß secretions were significantly higher from VAT than SAT. Higher levels of bFGF, Eotaxin-3, and TNF-α were secreted from the VAT of obese patients, while higher levels of IL-23 and TARC were secreted from the SAT of obese patients. The angiogenic factors, bFGF and VEGF-C, correlated with visceral fat area. Levels of OXPHOS are higher in VAT than SAT. Angiogenic, vascular injury and inflammatory cytokines are elevated in VAT versus SAT, indicating that VAT may promote inflammation, linked to regulating treatment response.

20.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830070

RESUMEN

Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.


Asunto(s)
Antituberculosos/inmunología , Antituberculosos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Clofazimina/farmacología , Citocinas/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...